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Abstract

This work is the ®rst molecular dynamics (MD) study on the surface tension of bubbles and their related charac-

teristics. Compared to thin ®lms or droplets, bubbles have not been investigated using the MD simulation method for

their properties owing to their inherent di�culties. To con®rm their existences, a stable bubble regime with respect to

simulation domain sizes is de®ned for the Lennard±Jones molecules. As well as the local densities, normal and tan-

gential pressure components are calculated and used for the estimation of bubble surface tensions. While the surface

tension of droplets varies as predicted by Tolman's equation, that of bubbles changes slightly and is greater than the

value for the planar interface by 15% or less. In addition, e�ects of solute molecules on the surface tension of bubbles in

a binary molecule system are investigated for the cases of less and more attractive interactions between solute and

solvent molecules. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The main objective of this work is to give a system-

atic estimation of bubble surface tension and related

characteristics using the molecular dynamics (MD)

simulation method. In this simulation a bubble center is

de®ned as the mass center of void space. By centering

the bubble in the calculation domain, distributions of

density and pressure tensor components are obtained

through an averaging process during the production

period. Based on the mechanical arguments for the force

and moment balances and the mechanical stability [1,2]

called as Ômechanical routeÕ, bubble surface tensions are

calculated together with the corresponding radii.

Interfacial phenomena involved in bubbles, thin

®lms and droplets have attracted the attention of re-

searchers for quite a long time due to their wide ap-

plications as well as due to their statistical uncertainties

in engineering and science ®elds [2±4]. Since detailed

molecular movements and interactions are critical to

estimate the characteristics of the interface, the MD

simulation method is frequently applied to produce

pseudoexperimental data [5,6]. While a signi®cant

number of MD simulations have been conducted on the

characteristics of droplets and liquid thin ®lms, much

less attention has been paid to the microscopic investi-

gation of bubbles and their characteristics [7] due to

their relative di�culties of dealing with higher number

densities, estimating the bubble center location, and

exploring the uncertainties of the metastable liquid-

phase surrounding them. Moreover, recent experimental

studies report that a bubble nucleation from micro-

structures is Ôuniquely di�erent from macroscale boilingÕ
[8], which demands a detailed investigation of micro-

scale bubble nucleation phenomena. A bubble, there-

fore, formed in a microsystem or smaller than that in

the macroscale boiling phenomena can be called as a

microbubble, which is relevant to be explored by the

MD simulation method.

To date, the MD research results available in litera-

ture for bubble characteristics are limited to the under-

standing of the incipient stage of cavitation using a

radial distribution function [9], the demonstration of the

cavitation in negative pressure by expanding a Lennard±

Jones liquid [10,11], and the simulation of the cavitation

based on Berthelot tube method and the preliminary

characterization of microbubbles [12].
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This paper conducts a series of canonical ensemble

MD simulations to generate a regime map for conditions

of stable bubbles as a function of calculation domain

sizes. Within the stable bubble regime the density pro-

®les and the normal and transverse components of the

pressure tensor are calculated to estimate the surface

tension of a bubble following the mechanical route.

Using the surface tension of a planar interface as a

reference value the surface tensions of bubbles and

droplets are compared with the theoretical estimation

from the Tolman equation [1,2,13]. In addition, a simple

binary molecule system is investigated to understand the

e�ects of foreign molecules on the surface tension of a

bubble.

2. Simulation models

In the classical theory the e�ect of curvature on the

surface tension of a small droplet is given by the Tolman

equation [1,2,13]

cS

c1
� 1ÿ 2d

RS

� � � � ; �1�

where cS and c1 are the surface tensions for a droplet

and a planar liquid±vapor interface, respectively and

d � Re ÿ RS; �2�
where Re and RS are the radii for the equimolar surface

and the surface of tension which will be de®ned later.

There is, however, neither a theoretical model to observe

the bubble characteristics e�ectively nor any attempt to

investigate the curvature e�ect of small bubbles from

MD approach or experiments. In the current study the

MD simulation will be employed because it is a prom-

ising tool for the microscopic estimation of the surface

tension of a microbubble and for the e�cient investi-

gation of related bubble nucleation phenomena and

their characteristics.

The intermolecular interactions in this MD study are

described by the well-known Lennard±Jones (LJ) 12-6

potential,

U�rij� � 4e
r
rij

� �12
"

ÿ r
rij

� �6
#
; �3�

where rij is the distance between two molecules, i and j,

and e and r are the representative scales of energy and

length, respectively. Molecules are placed in a cube of

volume L3 with periodic boundaries in all three dimen-

sions. They move according to the imposed inter-

molecular forces based on the potential function, Eq. (3),

and these movements can be described by the classical

momentum equations. The momentum equations are

discretized by the ``velocity Verlet'' algorithm [14]. In the

simulation, the total number of molecules N, the total

volume L3, and the average temperature T are kept

constant by the momentum scaling method.

To speed up the otherwise time-consuming simula-

tion and to de®ne an initial condition, a slightly sub-

cooled liquid-phase has been prepared and the molecules

are selected randomly from the liquid-phase according

to the average density in each simulation. A relatively

long equilibration period of more than 200,000 time

steps, however, is taken to ensure that the system is at

the preset condition, since phase-change phenomena

usually occur in a metastable situation and thus any

small perturbation can incur a remarkable change of the

state even after a very long time. This period is followed

by a production period of at least 60,000 time steps.

During the production period, instantaneous values of

Nomenclature

kB Boltzmann's constant

L simulation domain size

m mass of molecules

N number of molecules

P pressure

r distance between two molecules or radial

coordinate

R radius

t time

T temperature

x; y; z rectangular coordinates

Greek symbols

a attraction coe�cient

d Tolman's length

e scale of energy for potential functions

U potential function

c surface tension

q number density

r scale of length for potential functions

Superscript

* dimensionless quantity

Subscripts

avg global average

e equimolar dividing surface

g vapor-phase

K kinetic component

l liquid-phase

S surface of tension

N, T normal and transverse components

U con®gurational component

1 planar interface
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the local density and the local normal pressure compo-

nent are obtained by dividing the simulation cell into

concentric shells of thickness 0.1r. The densities and the

normal pressure components in each shell are accumu-

lated and averaged over the production period.

3. Results and discussion

In this MD study, the cut-o� radius rc beyond which

the pair interaction is neglected is set at 3r without a

long-range force correction. The time step is Dt � 5 fs.

All quantities indicated by an asterisk are non-dimen-

sionalized according to r, e, and m, which use the values

of argon such that r � 0:34 nm, e � 1:67� 10ÿ21 J, and

m � 6:63� 10ÿ26 kg. For example, the reduced temper-

ature, length, number density, pressure, and surface

tension are T � � kBT=e, r� � r=r, q� � qr3, P � � Pr3=e,
and c� � cr2=e, respectively.

In order to investigate the bubble nucleation process

and its characteristics, a grid of void packets is con-

structed and each void grid is de®ned as a cubic void cell

of side length 0.3r, in which there are no molecules

within 1.2r from the void cell center, while a relatively

larger grid size 0.588r has been used to visualize the void

packet in a heterogeneous nucleation [15]. Since the

number of void cells for a stable bubble is greater than

1000 in this study, the void grid size has a minor im-

portance. Its variation between 0.3r and 0.6r results in a

very little di�erence unless the number of void cells be-

comes much smaller than 200, which turns out to be the

case of an unstable bubble formation.

On the mass center of void packets the calculation

domain is centered arti®cially, which is critical to obtain

relevant average shapes of bubbles and their character-

istics. A typical cross-sectional snapshot (15% clipping

of the calculation domain around the plane of y � 0) of

the molecular distribution is shown in Fig. 1. Here, the

calculation conditions are q�avg � 0:6575, T � � 0:818,

and L� � 15. It is noted that the central region can be

regarded as a vapor-phase and the outer region of higher

density as a liquid-phase. Contrary to the general notion

of spherical bubble, the liquid±vapor interface in this

microscopic system cannot be de®ned sharply since the

bubble is not perfectly spherical and each phase is not

uniform at any given instant during the simulation,

necessitating the time averaging procedure.

Local density pro®les are calculated by counting and

time-averaging the number of molecules in shells of

thickness 0.1r. At T � � 0:818 the density pro®les of a

single-component molecule system contained in a cubi-

cal domain of L� � 15 are shown in Fig. 2 for various

average densities (q�avg) smaller than the saturated liquid

density of argon, q�l;sat � 0:776 [16]. Here, the average

density q�avg � N=L�3 remains unchanged for each sim-

ulation. It is usually understood that the state of density

lower than that of the saturated liquid state is metastable

and may turn into a two-phase equilibrium by a small

perturbation. For average densities greater than 0.665,

however, which is still much lower than that of the

saturated state, it is almost impossible to achieve a stable

bubble. Stable bubbles can be observed only for average

densities lower than 0.6625. For the case of q�avg � 0:665,

the local density in the center region is slightly lower

than that in the outer region, which implies that some of

the unstable bubble embryos form and collapse inter-

mittently, since their lifetimes are too short to be stable.

For stable bubbles the vapor density is about 0.01,

which is close to that of the experimental value,

q�g;sat � 0:00925 [16], while the liquid-phase density

is about 0.7, which is slightly lower than that of the
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Fig. 1. A cross-sectional snapshot of the molecular distribution

of a bubble for q�avg � 0:6575, L� � 15, and T � � 0:818.

Fig. 2. Local density pro®les for various average densities at

L� � 15 and T � � 0:818.
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saturated liquid-phase. From this it can be understood

that the liquid-phase is stretched and thus still in a

metastable state.

As represented in Fig. 2, for a ®xed calculation do-

main the average density should be smaller than a crit-

ical value to maintain a stable bubble. Fig. 3 de®nes the

calculation domain for the stable bubble nucleation.

This ®gure shows that the critical average density for a

bubble formation and the corresponding liquid-phase

density decrease with the decrease of the domain size

down to L� � 11. In other words, a larger domain is

more vulnerable to break-up and more liable to induce a

bubble than a smaller domain. This can be understood

by the Weibull equation [17], which implies that the

probability of failure (nucleation, here) increases expo-

nentially with the specimen volume, from which the size

e�ect of the calculation domain can be understood.

In contrast, for domains L� < 11 the average and the

liquid-phase densities increase, as the domain size de-

creases. This might be due to the fact that the liquid-

phase region between adjacent bubbles becomes too thin

to hold the bubble inside, the liquid-phase region breaks

up and thus the adjacent bubbles tend to merge together,

as depicted by Fig. 4 (20% clipping around the plane of

y � 0), whose simulation conditions are q�avg � 0:635

and L� � 9. Therefore, the results obtained for domains

L� < 11 are signi®cantly interfered by the adjacent do-

mains due to the periodic boundary condition and are

questionable.

In Fig. 5 local density pro®les of bubbles are shown

for various calculation domain sizes and average densi-

ties. For the cases of L�P 13 the density gradients at the

edge of the calculation domains are almost zero, while

those gradients for L�6 11 are quite di�erent from zero.

For larger calculation domain sizes the interfacial den-

sity approaches its liquid-phase density as r� increases,

because the liquid-phase region between the adjacent

bubbles is relatively thick enough to maintain spherical

uniformity. For smaller domain sizes, however, local

densities in the corner region of the domain are quite

di�erent from those near the sides or faces of the cubic

domain and furthermore, the bubble shape is no longer

spherical, as observed in Fig. 4.

Fig. 6 describes the pressure variation, speci®cally the

normal component in the interfacial region from vapor-

to liquid-phases as r� increases. The normal component

of the pressure tensor in the spherically symmetric sys-

tem is

P �N�r�� � P �K�r�� � P �U�r��; �4�
where the kinetic and the con®gurational terms [1] are:

P �K�r�� � q��r��T �; �5�

P �U�r�� � ÿ�4pr��ÿ1
X

k

~r� �~r�ij
��� ��� 1

r�ij

dU��r�ij�
dr�ij

: �6�

Similarly to the density pro®les shown in Fig. 5, the

gradients of the pressure pro®les in the edge region of

Fig. 3. Regime map for stable bubbles and corresponding

liquid-phase densities.
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Fig. 4. A cross-sectional snapshot of the molecular distribution

of a bubble for q�avg � 0:635, L� � 9, and T � � 0:818.

Fig. 5. Local density pro®les for various calculation domain

sizes and average densities.
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calculation domains L�6 11 are quite di�erent from

zero, since the spherically non-uniform distribution of

the density induces the non-uniform pressure distribu-

tion. The liquid-phase density in the edge region of each

curve increases very slightly with the increase of bubble

radius as shown in Fig. 5. The pressure in that region,

however, increases considerably, which can be explained

by the Laplace equation,

DP � 2cS

RS

; �7�

where DP is the pressure di�erence between vapor- and

liquid-phases.

Although the main concern in this study is the sur-

face tension of a bubble, it is interesting to compare the

density and pressure pro®les of a bubble, a thin ®lm and

a droplet, which are shown in Figs. 7(a)±(c). The density

q� and the normal pressure component P �N in Figs. 7(a)

and (c) are ®tted by the tanh function, which has been

frequently applied to ®t the density distribution for a

droplet. Data points denoted by symbols are obtained

from the MD simulation and lines are from the ®tting

function, for example,

q��r�� � 1

2
q�l
�
� q�g

�
ÿ 1

2
q�l
�
ÿ q�g

�
tanh 2�r�� ÿ R�0�=D�

�
:

�8�

Fig. 7. Pro®les of density and pressure tensors: (a) for a bubble at L� � 17; (b) for a thin ®lm at L� � 48; (c) for a droplet at L� � 30.

Fig. 6. Local normal pressure pro®les for various calculation

domain sizes and average densities.
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The transverse pressure component P �T can be obtained

from mechanical stability under the spherically sym-

metric assumption and given as

P �T�r�� � P �N�r�� �
r�

2

dP �N�r��
dr�

: �9�

While the tanh function ®ts the density and the normal

pressure component very well, the triangle data points

for P �T scatter considerably along the ®tting curve

(dashed line) due to the dependence on the ®rst-order

derivative in Eq. (9). Fluctuations of the data points for

P �T are more severe in the droplet case as shown in

Fig. 7(c) than that for other cases, since the counting

statistics in the droplet center region becomes very poor

due to the small volume of the shell for the averaging

process.

For the pressure components of the thin ®lm a re-

cently developed method [18] has been applied and re-

sults in the distributions shown in Fig. 7(b). In this

method the expressions are based on the Cartesian co-

ordinates and given as

p�
N
�k� � q��k�T � ÿ 1

V �sl

X
i;j

k z�2ij

r�ij
U�

0 �r�ij�fk;ij

 !* +
; �10�

p�T�k� � q��k�T � ÿ 1

V �sl

X
i;j

k
1
2
�x�2ij � y�2ij �

r�ij
U�

0 �r�ij�fk;ij

 !* +
;

�11�
where q��k� is the density in slab k instead of shell k used

in the spherical coordinate, Vsl is the volume of the slab

�Vsl � LxLyLsl�, Lsl is the slab thickness, and the term fk;ij

is de®ned as the ratio of the length that the force Fij

covers in slab k to the total length of the force. Before

this method is introduced, the pressure components have

been calculated from Eqs. (10) and (11) with fk;ij � 1,

which generates false negative values of the normal

component in the interfacial region for a planar inter-

face. Details are explained in recent work [18].

The pressure variations di�er from each other inter-

facial region, while the local density increases from

vapor-phase to liquid-phase for all cases. For a bubble

the normal pressure component decreases from vapor-

phase to liquid-phase, for a droplet it increases, and for

a thin ®lm it remains constant as that of vapor-phase.

This comparison supports the accurate prediction of

pressure components using the modi®ed method for thin

®lms.

While surface tensions for a droplet can be estimated

by the thermodynamic or the mechanical route [1], there

has not been any discussion on the surface tension for a

bubble. In this study, the mechanical route is employed

to calculate the bubble surface tension. From the me-

chanical arguments for the force and torque and the

mechanical stability conditions an expression for the

surface tension of a spherical interface [1,2] can be de-

rived as

c�3S � ÿ
1

8
P �l
�
ÿ P �g

�2
Z 1

0

r�3
dP �N
dr�

dr� �12�

and the radius of the surface of tension can be obtained

from Eq. (7) as

R�S �
2c�S

P �l ÿ P �g
: �13�

Fig. 8 compares surface tensions and Tolman's

length introduced in Eqs. (1) and (2) for droplets and

bubbles with respect to the equimolar dividing radius R�e ,

which can be given as

R�3e �
1

q�g ÿ q�l

Z 1

0

r�3
dq�

dr�
dr�: �14�

Open symbols represent the data directly obtained from

the MD simulation, and solid ones denote the data

estimated from the ®tting functions. Surface tensions

from the raw data and the ®tting functions agree well

with each other, while Tolman's lengths directly ob-

tained from simulation scatter more widely than those

from ®tting functions. In general, as R�e increases, sur-

face tension for bubbles decreases very slightly, but that

for droplets increases. Tolman's lengths for droplets

scatter around a value of 1.3, but those for bubbles

scatter around )0.7. It should be noted that the sign of

Tolman's length is negative for bubbles, which implies

that the surface tension of a bubble might be larger

than that of a planar interface from Eq. (1). Here, the

radii, R�e and R�S, are taken as positive to simplify the

comparison.

Fig. 9 compares surface tensions from the simulation

and from theoretical estimation by the simpli®ed and the

rigorous Tolman equations [13]. The simpli®ed equation

is given by Eq. (1) and the rigorous one is

Fig. 8. Surface tension and Tolman's length for bubbles and

droplets.

1854 S.H. Park et al. / International Journal of Heat and Mass Transfer 44 (2001) 1849±1856



ln
c�S
c�1

� �
�
Z r�

1

2d�=r�2� � 1� d�=r� � 1
3
d�2=r�2

ÿ �
1� 2d�=r�2� � 1� d�=r� � 1

3
d�2=r�2

ÿ � dr�: �15�

The simpli®ed equation agrees very well with the rigor-

ous expression except for small radii. For droplets,

surface tensions calculated from the MD simulation

agree with the prediction from the Tolman equation.

For bubbles, however, surface tensions from the simu-

lations are smaller than those from the Tolman equation

and larger than the value of the planar interface within a

15% range, even though there exists a decreasing

tendency with the increase of bubble radii. Here, c�1 is

0.545 in this case, which is obtained from the equation

c�1 �
1

2

Z 1

ÿ1
P �N
ÿ ÿ P �T

�
dz�; �16�

where P �N and P �T are calculated from Eqs. (10) and (11).

First, the discrepancy between the simulation results

and the theoretical predictions may come from the

periodic boundary conditions used in the MD simula-

tions in contrast to the in®nite boundary condition for

the theoretical estimation. Due to the periodicity of the

simulation condition each bubble is exposed to the

in¯uence of adjacent bubbles and the liquid-phases

between bubbles are con®ned within the calculation

domain. Secondly, as the bubble size decreases, the liq-

uid-phases are severely stretched to satisfy the Laplace

equation and the shapes of bubbles are signi®cantly

distorted, while theories are based on a spherical shape.

Thirdly, the density and pressure distributions are not

spherically symmetric, since the liquid-phase region be-

tween the adjacent bubbles is not usually thick enough

to maintain the spherical uniformity as discussed for

Fig. 5. Lastly, the theoretical model is based on a sta-

tionary system, while the bubble shape varies consider-

ably during the production period.

A simple binary molecule system of solvent molecules

(A) and solute molecules (B) is simulated to investigate

the e�ect of foreign molecules on surface tension of a

bubble. These molecules interact with each other based

on the Lennard±Jones potential,

U��r�ij� � 4
1

r�ij

 !12
24 ÿ aAB

1

r�ij

 !6
35; �17�

where the parameter aAB controls the miscibility of the

solute and solvent molecules [12,19] and e and r are the

same for all interactions. It is noted that the parameters

for the same molecules aAA and aBB are unity. For aAB

less than unity the attractive force between A and B

molecules is smaller than that between the same-type

molecules and thus resulting in a low solubility (im-

miscibility) or phase separation. For aAB greater than

unity the a�nity between A and B molecules is higher

than that between the same-type molecules. In this case

some solute molecules attract solvent molecules and may

reorder the arrangement of the solvent molecules as in

the solvation process.

In a previous paper [12] it was shown that even a small

amount of solute molecules could expedite a bubble nu-

cleation, although the dispersion of the foreign molecules

into the solvent molecules varies signi®cantly according

to the value of the parameter aAB. Fig. 10 describes

the surface tension variation with respect to aAB. For the

concentration of foreign molecules yB � 0:5% surface

tension is not in¯uenced much by the value of aAB, since

that of binary molecule systems �aAB 6� 1� is slightly

smaller than that of the single-component molecule

system �aAB � 1�. For a higher concentration of the

solute molecules �yB � 2%� the surface tension has a

tendency to decrease as aAB decreases for aAB < 1, but

the maximum of the surface tension appears around

aAB � 1:5, which necessitates the further research on

the interfacial tension of a binary system.

Fig. 10. Surface tensions of a binary molecule system for

q�avg � 0:66 and L� � 15.

Fig. 9. Comparison of surface tensions from MD simulation

and Tolman's theory for bubbles and droplets.
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4. Summary

This study employs the molecular dynamics simula-

tion method to investigate the surface tension of small

bubbles and their characteristics. To de®ne a bubble, a

void grid structure is constructed and the calculation

domain is centered arti®cially on the mass center of void

packets.

A smaller calculation domain yields a more stable

®eld because the wavelength of ¯uctuation is limited by

the calculation cell size. For this reason, the average

density for stable bubble nucleation decreases as the

domain size decreases down to a critical cell size. Below

this cell size, the shape of the bubble is signi®cantly

distorted and bubbles in adjacent calculation domains

tend to merge due to the break-up of the liquid-phase

region between the domains.

Based on the mechanical route and the assumption of

spherical bubble shape, the surface tension of a bubble is

calculated from the density pro®le and from the normal

and the transverse components of the pressure tensor.

With the decrease of the bubble radius, surface tensions

increase very slightly compared to the considerable de-

crease of droplet surface tensions as predicted by the

Tolman equation.

For a binary system, the surface tension decreases

slightly compared to that for a single-component system

with a small addition of foreign molecules. For a larger

concentration of foreign molecules the surface tension

decreases signi®cantly for a�nity coe�cients aAB < 1

and the maximum value appears at aAB > 1.
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